Radboud University Nijmegen

Genetic Algorithm-based Electromagnetic Fault Injection

Antun Maldini

Niels Samwel

Stjepan Picek

Lejla Batina

Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen

> FDTC 2018 2018-09-13

Antun Maldini

2018-09-13

GA-based EMFI

Radboud University Nijmegen

Outline

Introduction

Some prerequisites

Our solution

Exploiting obtained faults

Introduction

Radboud University Nijmegen

- Fault Injection (FI) supply voltage glitching, clock glitching, EM pulse, laser pulse
- on SHA-3 (Keccak) but generic
- which parameters to use? optimization algorithm

Idea

What we set out to do

- make an algorithm for parameter optimization
- use it on SHA-3 (Keccak)
- make it better than what's previously been done

Radboud University Nijmegen

Contribution

What we did

- made an EA for parameter optimization!
- attacked SHA-3
- it's better than the baseline! (and previous results)

Radboud University Nijmegen

What are we optimizing?

Parameters

X, Y – the two spatial dimensions

offset - w.r.t. the trigger

intensity - power of the EM pulse

No. of repetitions – a primitive form of pulse shape

These are the ones we can control with the equipment we have.

Radboud University Nijmegen

Why are we optimizing?

- most parameter settings don't result in FI
- exhaustive search impractical

Exhaustive search

- really exhaustive 10¹² points, 30 years
- even just 100×100 spatial, 20 intensity, 100 offset 37 days

Radboud University Nijmegen

Related work

• very little work on FI parameter optimization

Madau & al.

- EMFI susceptibility criterion
- all surface points ranked by this criterion, reject worst lpha%
- reject 50% of chip surface, with 80% faults kept
- by fault they mean any abnormal behavior

Carpi & al.

- supply voltage glitching
- two stages: a 2D search, followed by a 1D grid search
- genetic, later memetic algorithm

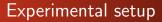
Radboud University Nijmegen

Experimental setup

Device tested:

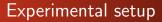
Cortex-M4F on STMicroelectronics board

Radboud University Nijmegen



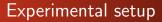
Device tested: Code running: Cortex-M4F on STMicroelectronics board SHA3-512 (WolfSSL implementation, in C)

Radboud University Nijmegen



Device tested: Code running: Fault injection by: Cortex-M4F on STMicroelectronics board SHA3-512 (WolfSSL implementation, in C) Riscure EM probe, VCGlitcher

Radboud University Nijmegen



Device tested: Code running: Fault injection by: All controlled by: Cortex-M4F on STMicroelectronics board SHA3-512 (WolfSSL implementation, in C) Riscure EM probe, VCGlitcher Python code on PC

Radboud University Nijmegen

Measuring different behaviours

Some definitions

point: a tuple of (X, Y, intensity, offset, #rep.)

measurement: a single sampling of a point

Radboud University Nijmegen

Measuring different behaviours

Some definitions

point: a tuple of (X, Y, intensity, offset, #rep.)measurement: a single sampling of a point

Several classes of behaviour:

- NORMAL nothing happens
- RESET target locks up
- SUCCESS we get a faulty output of the right length

Radboud University Nijmegen

Measuring different behaviours

Some definitions

point: a tuple of (X, Y, intensity, offset, #rep.)measurement: a single sampling of a point

Several classes of behaviour:

- NORMAL nothing happens
- RESET target locks up
- SUCCESS we get a faulty output of the right length

Behaviour is not completely determined by the point!

- do multiple (5) measurements per point
- behaviour changes \rightarrow CHANGING class

Radboud University Nijmegen

Objectives & assumptions

Objectives

- good coverage of the parameter space we know nothing in advance!
- speed

Radboud University Nijmegen

Objectives & assumptions

Objectives

- good coverage of the parameter space we know nothing in advance!
- speed

Assumptions

- EM pulse too weak NORMAL class
- EM pulse too strong RESET class
- desired behaviour is somewhere in between

Radboud University Nijmegen

Evolutionary algorithms

- population-based metaheuristic
- used for general, non-convex optimization problems
- exploration vs. exploitation

Radboud University Nijmegen

Evolutionary algorithms

A general outline:

Input : Parameters of the algorithm Output : Optimal solution set

 $t \leftarrow 0$ $P(0) \leftarrow CreateInitialPopulation$ while TerminationCriterion not satisfied do $t \leftarrow t + 1$ $P'(t) \leftarrow SelectMechanism (P(t - 1))$ $P(t) \leftarrow VariationOperators(P'(t))$ end while return OptimalSolutionSet(P)

Radboud University Nijmegen

Evolutionary algorithms

A general outline:

Input : Parameters of the algorithm Output : Optimal solution set

 $t \leftarrow 0$ $P(0) \leftarrow CreateInitialPopulation$ while TerminationCriterion not satisfied do $t \leftarrow t + 1$ $P'(t) \leftarrow SelectMechanism (P(t - 1))$ $P(t) \leftarrow VariationOperators(P'(t))$ end while return OptimalSolutionSet(P)

Radboud University Nijmegen

Genetic algorithms

A general outline:

Input : Parameters of the algorithm Output : Optimal solution set

 $t \leftarrow 0$ $P(0) \leftarrow CreateInitialPopulation$ while TerminationCriterion not satisfied do $t \leftarrow t + 1$ $P'(t) \leftarrow SelectMechanism (P(t - 1))$ $Ch(t) \leftarrow Mutate(Combine(P'(t)))$ $P(t) \leftarrow Pick \ sizeof(P(t)) \ from \ (Ch(t) \cup P(t))$ end while return OptimalSolutionSet(P)

Radboud University Nijmegen

Two phases: GA and local search

Radboud University Nijmegen

Our algorithm

Two phases: GA and local search

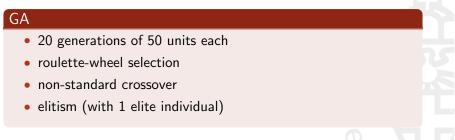
GΑ

- 20 generations of 50 units each
- roulette-wheel selection
- non-standard crossover
- elitism (with 1 elite individual)

Radboud University Nijmegen

Our algorithm

Two phases: GA and local search



LS

- run after the GA is done
- further exploit the area around the SUCCESSful points found

Selection

- 3-tournament resulted in overly fast convergence
- roulette-wheel is slower, especially with large population
- keeping the best individual useful when good points are rare

Crossover

Standard crossover

for each parameter p do
 child.p ← random_choice(parent₁.p, parent₂.p)
end for

Our crossover

for each parameter p do
 child.p ← random value in range [parent₁.p, parent₂.p]
end for

Radboud University Nijmegen

Illustrated on a 3-cube

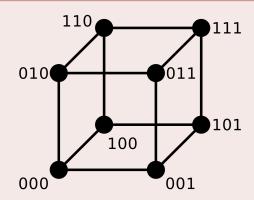


Image by Colin Burnett, CC BY-SA 3.0

Antun Maldini

Radboud University Nijmegen

Fitness function

- NORMAL 2
- RESET 5
- SUCCESS 10
- CHANGING ???

Radboud University Nijmegen

Fitness function

- NORMAL 2
- RESET 5
- SUCCESS 10
- CHANGING we look at the 5 measurements of a point

 $fitness_{CHANGING} = 4 + 0.2 \cdot N_{NORMAL} + 0.5 \cdot N_{RESET} + 1.2 \cdot N_{SUCCESS}$

Radboud University Nijmegen

Local search

When we're done exploring...

for each SUCCESSful point P do
 for i from 1 to 10 do
 neighbour ← random point from neighbourhood(P)
 scan neighbour
 end for
end for

Neighbourhood: cube centered on P, edge length 0.02

Radboud University Nijmegen

Results

- all statistics are averages over 5 runs
- average run length of 3301.6 points

TL;DR

	Random	GA	improvement
faulty msmts.	1.3%	58.8%	42.5 times
distinct faulty msmts.	1.0%	19.9%	20.5 times

 \ldots as % of all individual measurements

Results – details

	whole run		first 500 points	
	Random	GA	Random	GA
NORMAL	2955.8 (90.7%)	662.8 (18.9%)	452.6 (90.5%)	315.2 (63.0%)
RESET	65.0 (2.0%)	496.4 (15.0%)	9.8 (2.0%)	73.4 (14.7%)
CHANGING	232.4 (7.0%)	375.2 (11.4%)	36.0 (7.2%)	79.0 (15.8%)
SUCCESS	8.8 (0.3%)	1807.2 (54.7%)	1.6 (0.3%)	32.4 (6.5%)
#faulty m.	228.2 (1.3%)	9700.4 (58.8%)	33.4 (1.3%)	260.8 (10.4%)
#distinct m.	160.8 (1.0%)	3288.4 (19.9%)	22.6 (0.9%)	158.8 (6.3%)
-				

Radboud University Nijmegen

Exploiting faults?

Radboud University Nijmegen

• Can we actually use the faulty outputs we have?

Radboud University Nijmegen

- Can we actually use the faulty outputs we have?
- How?

Radboud University Nijmegen

- Can we actually use the faulty outputs we have?
- How?
- Is it practical?

Radboud University Nijmegen

Yes.

Exploiting faults?

- Can we actually use the faulty outputs we have?
- How?
- Is it practical?

Radboud University Nijmegen



- Can we actually use the faulty outputs we have?
- How?
- Is it practical?

Yes.

Use DFA or AFA.

Radboud University Nijmegen



Can we actually use the faulty outputs we have? Yes.
How? Use DFA or AFA.
Is it practical? Mostly.

Radboud University Nijmegen

Algebraic Fault Analysis

- Luo & alii, 2018. (for SHA-3)
- Idea: let a SAT solver do the hard work
 - represent internal state by boolean vars
 - 2 formulate algorithm & fault model as boolean statements (this provides the propagation constraints)
 - obtain a (correct, faulty) output pair (these provide concrete constraints)
- enough implicit information to deduce part of state

Radboud University Nijmegen

Algebraic Fault Analysis

Recovering the state

load into SAT solver: (correct, faulty)
while more solutions exist do
 solution ← SAT.get_solution()
 SAT.add_constraint(¬solution)
end while

Solver eventually runs out of satisfiable solutions.

Bits which are same in all solutions are recoverable.

Radboud University Nijmegen

Algebraic Fault Analysis, specifics

- Luo & al. provide 3 fault models (8-bit, 16-bit, 32-bit)
- In *n*-bit fault model, faults are *n*-bit aligned
- also, three methods: single-fault, two-fault, two-fault with partially recovered state at χ_i^{23}
- we use Method III (the last one)

Results

GΑ

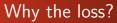
- 106 exploitable faults
- out of 14979 distinct faults (0.71%)
- out of 82540 measurements (0.141%)

Random

- 110 exploitable faults
- out of 947 distinct faults (11.61%)
- out of 100000 measurements (0.113%)

A bit more efficient – 24.6%.

Radboud University Nijmegen



- the GA phase is "blind" (no exploitability knowledge)
- the LS phase searches around all SUCCESS points equally

To do:

Integrate exploitability checks in fitness function

Radboud University Nijmegen

Local search – neighbourhood?

- The share of unique faults looks lower than baseline (34% vs 70%)
- Not a fair comparison!
- Still, can we improve?

To do:

Figure out a better range & number of points to scan in neighbourhood

Questions?

