
Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Genetic Algorithm-based Electromagnetic Fault
Injection

Antun Maldini

Niels Samwel

Stjepan Picek

Lejla Batina

Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen

FDTC 2018
2018-09-13

Antun Maldini 2018-09-13 GA-based EMFI 1 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Outline

Introduction

Some prerequisites

Our solution

Exploiting obtained faults

Antun Maldini 2018-09-13 GA-based EMFI 2 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Introduction

• Fault Injection (FI) – supply voltage glitching, clock glitching,
EM pulse, laser pulse

• on SHA-3 (Keccak) – but generic

• which parameters to use? – optimization algorithm

Antun Maldini 2018-09-13 GA-based EMFI 3 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Idea

What we set out to do
• make an algorithm for parameter optimization

• use it on SHA-3 (Keccak)

• make it better than what’s previously been done

Antun Maldini 2018-09-13 GA-based EMFI 4 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Contribution

What we did
• made an EA for parameter optimization!

• attacked SHA-3

• it’s better than the baseline! (and previous results)

Antun Maldini 2018-09-13 GA-based EMFI 5 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

What are we optimizing?

Parameters

X, Y – the two spatial dimensions

offset – w.r.t. the trigger

intensity – power of the EM pulse

No. of repetitions – a primitive form of pulse shape

These are the ones we can control with the equipment we have.

Antun Maldini 2018-09-13 GA-based EMFI 6 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Why are we optimizing?

• most parameter settings don’t result in FI

• exhaustive search impractical

Exhaustive search

• really exhaustive – 1012 points, 30 years

• even just 100× 100 spatial, 20 intensity, 100 offset – 37 days

Antun Maldini 2018-09-13 GA-based EMFI 7 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Related work

• very little work on FI parameter optimization

Madau & al.
• EMFI susceptibility criterion

• all surface points ranked by this criterion, reject worst α%

• reject 50% of chip surface, with 80% faults kept

• by fault they mean any abnormal behavior

Carpi & al.

• supply voltage glitching

• two stages: a 2D search, followed by a 1D grid search

• genetic, later memetic algorithm

Antun Maldini 2018-09-13 GA-based EMFI 8 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Experimental setup

Device tested: Cortex-M4F on STMicroelectronics board

Code running: SHA3-512 (WolfSSL implementation, in C)
Fault injection by: Riscure EM probe, VCGlitcher
All controlled by: Python code on PC

Antun Maldini 2018-09-13 GA-based EMFI 9 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Experimental setup

Device tested: Cortex-M4F on STMicroelectronics board
Code running: SHA3-512 (WolfSSL implementation, in C)

Fault injection by: Riscure EM probe, VCGlitcher
All controlled by: Python code on PC

Antun Maldini 2018-09-13 GA-based EMFI 9 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Experimental setup

Device tested: Cortex-M4F on STMicroelectronics board
Code running: SHA3-512 (WolfSSL implementation, in C)
Fault injection by: Riscure EM probe, VCGlitcher

All controlled by: Python code on PC

Antun Maldini 2018-09-13 GA-based EMFI 9 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Experimental setup

Device tested: Cortex-M4F on STMicroelectronics board
Code running: SHA3-512 (WolfSSL implementation, in C)
Fault injection by: Riscure EM probe, VCGlitcher
All controlled by: Python code on PC

Antun Maldini 2018-09-13 GA-based EMFI 9 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Measuring different behaviours

Some definitions

point: a tuple of (X ,Y , intensity , offset,#rep.)

measurement: a single sampling of a point

Several classes of behaviour:

• NORMAL – nothing happens

• RESET – target locks up

• SUCCESS – we get a faulty output of the right length

Behaviour is not completely determined by the point!

• do multiple (5) measurements per point

• behaviour changes → CHANGING class

Antun Maldini 2018-09-13 GA-based EMFI 10 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Measuring different behaviours

Some definitions

point: a tuple of (X ,Y , intensity , offset,#rep.)

measurement: a single sampling of a point

Several classes of behaviour:

• NORMAL – nothing happens

• RESET – target locks up

• SUCCESS – we get a faulty output of the right length

Behaviour is not completely determined by the point!

• do multiple (5) measurements per point

• behaviour changes → CHANGING class

Antun Maldini 2018-09-13 GA-based EMFI 10 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Measuring different behaviours

Some definitions

point: a tuple of (X ,Y , intensity , offset,#rep.)

measurement: a single sampling of a point

Several classes of behaviour:

• NORMAL – nothing happens

• RESET – target locks up

• SUCCESS – we get a faulty output of the right length

Behaviour is not completely determined by the point!

• do multiple (5) measurements per point

• behaviour changes → CHANGING class

Antun Maldini 2018-09-13 GA-based EMFI 10 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Objectives & assumptions

Objectives

• good coverage of the parameter space – we know nothing in
advance!

• speed

Assumptions

• EM pulse too weak – NORMAL class

• EM pulse too strong – RESET class

• desired behaviour is somewhere in between

Antun Maldini 2018-09-13 GA-based EMFI 11 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Objectives & assumptions

Objectives

• good coverage of the parameter space – we know nothing in
advance!

• speed

Assumptions

• EM pulse too weak – NORMAL class

• EM pulse too strong – RESET class

• desired behaviour is somewhere in between

Antun Maldini 2018-09-13 GA-based EMFI 11 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Evolutionary algorithms

• population-based metaheuristic

• used for general, non-convex optimization problems

• exploration vs. exploitation

Antun Maldini 2018-09-13 GA-based EMFI 12 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Evolutionary algorithms

A general outline:

Input : Parameters of the algorithm
Output : Optimal solution set

t ← 0
P(0)← CreateInitialPopulation
while TerminationCriterion not satisfied do
t ← t + 1
P ′(t)← SelectMechanism (P(t − 1))
P(t)← VariationOperators(P ′(t))

end while
return OptimalSolutionSet(P)

Antun Maldini 2018-09-13 GA-based EMFI 13 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Evolutionary algorithms

A general outline:

Input : Parameters of the algorithm
Output : Optimal solution set

t ← 0
P(0)← CreateInitialPopulation
while TerminationCriterion not satisfied do
t ← t + 1
P ′(t)← SelectMechanism (P(t − 1))
P(t)← VariationOperators(P ′(t))

end while
return OptimalSolutionSet(P)

Antun Maldini 2018-09-13 GA-based EMFI 13 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Genetic algorithms

A general outline:

Input : Parameters of the algorithm
Output : Optimal solution set

t ← 0
P(0)← CreateInitialPopulation
while TerminationCriterion not satisfied do
t ← t + 1
P ′(t)← SelectMechanism (P(t − 1))
Ch(t)← Mutate(Combine(P ′(t)))
P(t)← Pick sizeof (P(t)) from (Ch(t) ∪ P(t))

end while
return OptimalSolutionSet(P)

Antun Maldini 2018-09-13 GA-based EMFI 14 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Our algorithm

Two phases: GA and local search

GA
• 20 generations of 50 units each

• roulette-wheel selection

• non-standard crossover

• elitism (with 1 elite individual)

LS
• run after the GA is done

• further exploit the area around the SUCCESSful points found

Antun Maldini 2018-09-13 GA-based EMFI 15 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Our algorithm

Two phases: GA and local search

GA
• 20 generations of 50 units each

• roulette-wheel selection

• non-standard crossover

• elitism (with 1 elite individual)

LS
• run after the GA is done

• further exploit the area around the SUCCESSful points found

Antun Maldini 2018-09-13 GA-based EMFI 15 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Our algorithm

Two phases: GA and local search

GA
• 20 generations of 50 units each

• roulette-wheel selection

• non-standard crossover

• elitism (with 1 elite individual)

LS
• run after the GA is done

• further exploit the area around the SUCCESSful points found

Antun Maldini 2018-09-13 GA-based EMFI 15 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Selection

• 3-tournament resulted in overly fast convergence

• roulette-wheel is slower, especially with large population

• keeping the best individual – useful when good points are rare

Antun Maldini 2018-09-13 GA-based EMFI 16 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Crossover

Standard crossover

for each parameter p do
child .p ← random choice(parent1.p, parent2.p)

end for

Our crossover

for each parameter p do
child .p ← random value in range [parent1.p, parent2.p]

end for

Antun Maldini 2018-09-13 GA-based EMFI 17 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Crossover

Illustrated on a 3-cube

Image by Colin Burnett, CC BY-SA 3.0

Antun Maldini 2018-09-13 GA-based EMFI 18 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Fitness function

• NORMAL – 2

• RESET – 5

• SUCCESS – 10

• CHANGING – ???

fitnessCHANGING = 4 + 0.2 · NNORMAL + 0.5 · NRESET + 1.2 · NSUCCESS

Antun Maldini 2018-09-13 GA-based EMFI 19 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Fitness function

• NORMAL – 2

• RESET – 5

• SUCCESS – 10

• CHANGING – we look at the 5 measurements of a point

fitnessCHANGING = 4 + 0.2 · NNORMAL + 0.5 · NRESET + 1.2 · NSUCCESS

Antun Maldini 2018-09-13 GA-based EMFI 19 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Local search

When we’re done exploring...

for each SUCCESSful point P do
for i from 1 to 10 do

neighbour ← random point from neighbourhood(P)
scan neighbour

end for
end for

Neighbourhood: cube centered on P, edge length 0.02

Antun Maldini 2018-09-13 GA-based EMFI 20 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Results

• all statistics are averages over 5 runs

• average run length of 3301.6 points

TL;DR

Random GA improvement

faulty msmts. 1.3% 58.8% 42.5 times
distinct faulty msmts. 1.0% 19.9% 20.5 times

. . . as % of all individual measurements

Antun Maldini 2018-09-13 GA-based EMFI 21 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Results – details

whole run first 500 points
Random GA Random GA

NORMAL 2955.8 (90.7%) 662.8 (18.9%) 452.6 (90.5%) 315.2 (63.0%)
RESET 65.0 (2.0%) 496.4 (15.0%) 9.8 (2.0%) 73.4 (14.7%)

CHANGING 232.4 (7.0%) 375.2 (11.4%) 36.0 (7.2%) 79.0 (15.8%)
SUCCESS 8.8 (0.3%) 1 807.2 (54.7%) 1.6 (0.3%) 32.4 (6.5%)

#faulty m. 228.2 (1.3%) 9700.4 (58.8%) 33.4 (1.3%) 260.8 (10.4%)
#distinct m. 160.8 (1.0%) 3288.4 (19.9%) 22.6 (0.9%) 158.8 (6.3%)

Antun Maldini 2018-09-13 GA-based EMFI 22 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have?

Yes.

• How?

Use DFA or AFA.

• Is it practical?

Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have?

Yes.

• How?

Use DFA or AFA.

• Is it practical?

Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have?

Yes.

• How?

Use DFA or AFA.

• Is it practical?

Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have?

Yes.

• How?

Use DFA or AFA.

• Is it practical?

Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have? Yes.

• How?

Use DFA or AFA.

• Is it practical?

Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have? Yes.

• How? Use DFA or AFA.

• Is it practical?

Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Exploiting faults?

• Can we actually use the faulty outputs we have? Yes.

• How? Use DFA or AFA.

• Is it practical? Mostly.

Antun Maldini 2018-09-13 GA-based EMFI 23 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Algebraic Fault Analysis

• Luo & alii, 2018. (for SHA-3)

• Idea: let a SAT solver do the hard work

1 represent internal state by boolean vars
2 formulate algorithm & fault model as boolean statements

(this provides the propagation constraints)
3 obtain a (correct, faulty) output pair

(these provide concrete constraints)

• enough implicit information to deduce part of state

Antun Maldini 2018-09-13 GA-based EMFI 24 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Algebraic Fault Analysis

Recovering the state

load into SAT solver: (correct, faulty)
while more solutions exist do
solution← SAT .get solution()
SAT .add constraint(¬solution)

end while

Solver eventually runs out of satisfiable solutions.

Bits which are same in all solutions are recoverable.

Antun Maldini 2018-09-13 GA-based EMFI 25 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Algebraic Fault Analysis, specifics

• Luo & al. provide 3 fault models (8-bit, 16-bit, 32-bit)

• In n-bit fault model, faults are n-bit aligned

• also, three methods: single-fault, two-fault, two-fault with
partially recovered state at χ23

i

• we use Method III (the last one)

Antun Maldini 2018-09-13 GA-based EMFI 26 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Results

GA
• 106 exploitable faults

• out of 14979 distinct faults (0.71%)

• out of 82540 measurements (0.141%)

Random
• 110 exploitable faults

• out of 947 distinct faults (11.61%)

• out of 100000 measurements (0.113%)

A bit more efficient – 24.6%.

Antun Maldini 2018-09-13 GA-based EMFI 27 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Why the loss?

• the GA phase is ”blind” (no exploitability knowledge)

• the LS phase searches around all SUCCESS points equally

To do:

Integrate exploitability checks in fitness function

Antun Maldini 2018-09-13 GA-based EMFI 28 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Local search – neighbourhood?

• The share of unique faults looks lower than baseline (34% vs
70%)

• Not a fair comparison!

• Still, can we improve?

To do:

Figure out a better range & number of points to scan in
neighbourhood

Antun Maldini 2018-09-13 GA-based EMFI 29 / 30



Introduction
Some prerequisites

Our solution
Exploiting obtained faults

Radboud University Nijmegen

Questions?

Antun Maldini 2018-09-13 GA-based EMFI 30 / 30


	Introduction
	Some prerequisites
	Our solution
	Exploiting obtained faults

